
Binary Relations



Outline for Today

Binary Relations

• Reasoning about connections between 
objects.

Equivalence Relations

• Reasoning about clusters.

Strict Orders

• Reasoning about prerequisites.



Relationships

In CS103, you've seen examples of relationships

• between sets:

A ⊆ B

• between numbers:

x < y x ≡ₖ y         x ≤ y

• between people:

p loves q

Since these relations focus on connections between 
two objects, they are called binary relations.

• The “binary” here means “pertaining to two things,” 
not “made of zeros and ones.”



What exactly is a binary relation?
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Binary Relations

A binary relation over a set A is a predicate 
R that can be applied to ordered pairs of 
elements drawn from A.

If R is a binary relation over A and it holds for 
the pair (a, b), we write aRb.

3 = 3                5 < 7                Ø ⊆ ℕ

If R is a binary relation over A and it does not 
hold for the pair (a, b), we write aR̸b.

4 ≠ 3                4 ≮ 3                ℕ ⊈ Ø



Properties of Relations

Generally speaking, if R is a binary relation over a 
set A, the order of the operands is significant.

• For example, 3 < 5, but 5 ≮ 3.

In some relations order is irrelevant; more on that 
later.

Relations are always defined relative to some 
underlying set.

It's not meaningful to ask whether ☺ ⊆ 15, for 
example, since ⊆ is defined over sets, not arbitrary 
objects.



Visualizing Relations

We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow between 
an element a and an element b if aRb is true.

Example: the relation a | b (meaning “a divides b”) over 
the set {1, 2, 3, 4} looks like this:
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Visualizing Relations

We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow between 
an element a and an element b if aRb is true.

Example: the relation a ≠ b over the set {1, 2, 3, 4} looks 
like this:
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Visualizing Relations

We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow between 
an element a and an element b if aRb is true.

Example: the relation a = b over the set {1, 2, 3, 4} looks 
like this:
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Visualizing Relations

We can visualize a binary relation R over a set A by 
drawing the elements of A and drawing an arrow between 
an element a and an element b if aRb is true.

Example: below is some relation over {1, 2, 3, 4} that's a 
totally valid relation even though there doesn't appear to 
be a simple unifying rule.
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Capturing Structure



Capturing Structure

• Binary relations are an excellent way for 
capturing certain structures that appear 
in computer science.

• Today, we'll look at two examples 
(partitions and prerequisites).

• Then on Friday, we'll explore how to 
write proofs about definitions given in 
first-order logic.



Partitions























Partitions

• A partition of a set is a way of splitting the set 
into disjoint, nonempty subsets so that every 
element belongs to exactly one subset.

• Two sets are disjoint if their intersection is the 
empty set; formally, sets S and T are disjoint 
if S ∩ T = Ø.

• Intuitively, a partition of a set breaks the set 
apart into smaller pieces.

• There doesn't have to be any rhyme or reason to 
what those pieces are, though often there is one.



Partitions and Clustering

• If you have a set of data, you can often 
learn something from the data by finding 
a “good” partition of that data and 
inspecting the partitions.

• Usually, the term clustering is used in 
data analysis rather than partitioning.

• Interested to learn more? Take CS161 or 
CS246!



What's the connection between partitions 
and binary relations?
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∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



Reflexivity

Some relations always hold from any element to 
itself.

Examples:

• x = x for any x.

• A ⊆ A for any set A.

• x ≡ₖ x for any x.

Relations of this sort are called reflexive.

Formally speaking, a binary relation R over a set A is 
reflexive if the following first-order statement is true:

∀a ∈ A. aRa

(“Every element is related to itself.”)   



Reflexivity Visualized

∀a ∈ A. aRa
(“Every element is related to itself.”)



∀a ∈ A. aRa
(“Every element is related to itself.”)

Let R be the
relation drawn
to the left. Is R

reflexive?



∀a ∈ A. aRa
(“Every element is related to itself.”)



∀a ∈ A. aRa
(“Every element is related to itself.”)

a



∀a ∈ A. aRa
(“Every element is related to itself.”)

a



∀a ∈ A. aRa
(“Every element is related to itself.”)

a

This means that R is 
not reflexive, since 
the first-order logic 

statement given 
below is not true.



Is           reflexive?

∀a ∈ A. aRa
(“Every element is related to itself.”)



Is           reflexive?

∀a ∈ ??. a    a



Is           reflexive?

∀a ∈ ??. a    a

Reflexivity is a property 
of relations, not 

individual objects.



∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



Symmetry

In some relations, the relative order of the objects 
doesn't matter.

Examples:

• If x = y, then y = x.

• If x ≡ₖ y, then y ≡ₖ x.

These relations are called symmetric.

Formally: a binary relation R over a set A is called 
symmetric if the following first-order statement is 
true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bRa)  

(“If a is related to b, then b is related to a.”)



Symmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)
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Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)
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∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

Is This Relation Symmetric?



Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)



Is This Relation Symmetric?
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Is This Relation Symmetric?
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Is This Relation Symmetric?
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Is This Relation Symmetric?
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Is This Relation Symmetric?
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Is This Relation Symmetric?
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Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a



Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)

a



Is This Relation Symmetric?

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
(“If a is related to b, then b is related to a.”)
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∀a ∈ A. aRa

∀a ∈ A. ∀b ∈ A. (aRb → bRa)
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Transitivity

Many relations can be chained together.

Examples:

• If x = y and y = z, then x = z.

• If R ⊆ S and S ⊆ T, then R ⊆ T.

• If x ≡ₖ y and y ≡ₖ z, then x ≡ₖ z.

These relations are called transitive.

A binary relation R over a set A is called transitive if 
the following first-order statement is true about R:

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

(“Whenever a is related to b and b is
related to c, we know a is related to c.)



Transitivity Visualized

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)



Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)
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Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b



Is This Relation Transitive?

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)
(“Whenever a is related to b and b is

related to c, we know a is related to c.)

a

c

b



Equivalence Relations

An equivalence relation is a relation that 
is reflexive, symmetric and transitive.

Some examples:

• x = y

• x ≡ₖ y

• x has the same color as y

• x has the same shape as y.



Time-Out for Announcements!



Problem Set One Grades

• You need to read over the feedback
on your pset 1 as soon as possible.

• Easiest way to improve in this course is 
attempting problems and incorporating 
feedback.

• Almost the entire point of psets is to give 
practice.



Problem Set Two

• The problem set is due Thursday at 11:59PM.

• Have questions?

• Stop by office hours!

• Ask on Campuswire!

• General problem set policy reminders:

• Please tag your pages on Gradescope

• All solutions must be typed in LaTeX.

• Partners should only make one submission – put both 
partners names on the PDF and tag both partners on 
Gradescope

• Working in partners is encouraged!



Back to CS103!



What's the connection between partitions 
and binary relations?



xRy if    x and y have the same shape



xTy if    x and y have the same color



Equivalence Classes

Given an equivalence relation R over a set 
A, for any x ∈ A, the equivalence class of 
x is the set

[x]R = { y ∈ A | xRy }

Intuitively, the set [x]R contains all 
elements of A that are related to x by 
relation R.



xRy if    x and y have the same shape

[    ]R [    ]R[    ]R



The Fundamental Theorem of 
Equivalence Relations: Let R be an 
equivalence relation over a set A. Then 
every element a ∈ A belongs to exactly one 
equivalence class of R.



xRy if    x and y have the same shape

[    ]R [    ]R[    ]R



How’d We Get Here?

We discovered equivalence relations by 
thinking about partitions of a set of elements.

We saw that if we had a binary relation that 
tells us whether two elements are in the same 
group, it had to be reflexive, symmetric, and 
transitive.

The FToER says that, in some sense, these 
rules precisely capture what it means to be a 
partition.



Binary relations give us a common 
language to describe common 

structures.



Equivalence Relations IRL

Most modern programming languages include some 
sort of hash table data structure.

• Java: HashMap

• C++: std::unordered_map

• Python: dict

If you insert a key/value pair and then try to look up a 
key, the implementation has to be able to tell whether 
two keys are equal.

Although each language has a different mechanism for 
specifying this, many languages describe them in 
similar ways...



Equivalence Relations IRL

“The equals method implements an equivalence 
relation on non-null object references:

• It is reflexive: for any non-null reference value x, 
x.equals(x) should return true.

• It is symmetric: for any non-null reference values 
x and y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

• It is transitive: for any non-null reference values 
x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) should return true.”

Java 8 Documentation



Equivalence Relations IRL

“The equals method implements an equivalence 
relation on non-null object references:

• It is reflexive: for any non-null reference value x, 
.equals(x) should return true.

• It is symmetric: for any non-null reference values 
x and y, x.equals(y) should return true if and only if 
y.equals(x) returns true.

• It is transitive: for any non-null reference values 
x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) should return true.”

Java 8 Documentation



Equivalence Relations IRL

“Each unordered associative container is 
parameterized by Key, by a function object 
type Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



Equivalence Relations IRL

“Each unordered associative container is 
parameterized by Key, by a function object 
type Hash that meets the Hash requirements 
(17.6.3.4) and acts as a hash function for 
argument values of type Key, and by a binary 
predicate Pred that induces an equivalence 
relation on values of type Key. Additionally, 
unordered_map and unordered_multimap associate 
an arbitrary mapped type T with the Key.”

C++14 ISO Spec, §23.2.5/3



Prerequisite Structures



CS106B

Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110

Principles of
Computer Systems

CS103

CS109
Intro to Probability

for Computer
Scientists

CS161

Design and Analysis

of Algorithms

The CS Core
T

h
e
o
r
y

Mathematical
Foundations of

Computing





Pancakes

Everyone's got a pancake recipe. This one comes from Food Wishes (http://foodwishes.blogspot.com/2011/08/grandma-kellys-good-old-
fashioned.html).

Ingredients

· 1 1/2 cups all-purpose flour

· 3 1/2 tsp baking powder

· 1 tsp salt

· 1 tbsp sugar

· 1 1/4 cup milk

· 1 egg

· 3 tbsp butter, melted

Directions

1. Sift the dry ingredients together.

2. Stir in the butter, egg, and milk. Whisk together to form the batter.

3. Heat a large pan or griddle on medium-high heat. Add some oil.

4. Make pancakes one at a time using 1/4 cup batter each. They're ready
to flip when the centers of the pancakes start to bubble.



Measure
Flour

Measure
Baking Pwdr

Measure
Salt

Measure
Sugar

Measure
Milk

Melt
Butter

Beat Egg

Combine Dry
Ingredients

Heat
Griddle

Oil
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes



Relations and Prerequisites

Let's imagine that we have a prerequisite 
structure with no circular dependencies.

We can think about a binary relation R
where aRb means

“a must happen before b”

What properties of R could we deduce just 
from this?
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∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



Irreflexivity

Some relations never hold from any element to 
itself.

As an example, x ≮ x for any x.

Relations of this sort are called irreflexive.

Formally speaking, a binary relation R over a set 
A is irreflexive if the following first-order logic 
statement is true about R:

∀a ∈ A. aR̸a

(“No element is related to itself.”)   



Irreflexivity Visualized

∀a ∈ A. aR̸a
(“No element is related to itself.”)





Is this relation 
reflexive?



∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
reflexive?



∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
reflexive?



∀a ∈ A. aRa
(“Every element is related to itself.”)

Is this relation 
reflexive?

Nope!





Is this relation 
irreflexive?



∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irreflexive?



∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irreflexive?



∀a ∈ A. aR̸a
(“No element is related to itself.”)

Is this relation 
irreflexive?

Nope!



Reflexivity and Irreflexivity

Reflexivity and irreflexivity are not negations 
of one another!

Here's the definition of reflexivity:

∀a ∈ A. aRa

What is the negation of the above statement?

∃a ∈ A. aRa̸

What is the definition of irreflexivity?

∀a ∈ A. aR̸a



∀a ∈ A. aRa

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



Irreflexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



Irreflexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



Asymmetry

In some relations, the relative order of the objects 
can never be reversed.

As an example, if x < y, then y ≮ x.

These relations are called asymmetric.

Formally: a binary relation R over a set A is called 
asymmetric if the following first-order logic 
statement is true about R:

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)  

(“If a relates to b, then b does not relate to a.”)



Asymmetry Visualized

∀a ∈ A. ∀b ∈ A. (aRb → bR̸a)
(“If a relates to b, then b does not relate to a.”)



Question to Ponder: Are symmetry and 
asymmetry negations of one another?



Irreflexivity

Transitivity

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



Irreflexivity

Transitivity

Asymmetry



Strict Orders

A strict order is a relation that is irreflexive, 
asymmetric and transitive.

Some examples:

x < y.

a can run faster than b.

A ⊊ B (that is, A ⊆ B and A ≠ B).

Strict orders are useful for

• representing prerequisite structures,

• modeling dependencies,

• listing preferences,

• and so much more!



Strict Orders IRL

• In C++, many STL containers rely on strict orders to 
define the relative position of elements in terms of 
precedence of one item over other.

• Eg. the std::set which is implemented with a binary 
search tree.

• If you want to use std::sort, you have to provide a 
comparator function or overload the < operator.

• If you overload the < operator, C++ requires that the < 
relation be a strict order over the underlying type!



Recap

Binary Relations

• Reasoning about connections between 
objects.

Equivalence Relations

• Reasoning about clusters.

Strict Orders

• Reasoning about prerequisites.



Next Time

Proofs involving Binary Relations

• Equivalence Relation Proofs

• Alternative Perspectives on Partitions

• Proofs Involving Multiple Relations


